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A video conference server receives a plurality of video frames
including a current frame and at least one previous frame.
Each of the video frames includes a corresponding image and
a corresponding depth map. The server produces a directional
distance function (DDF) field that represents an area sur-
rounding a target surface of the object captured in the current
frame. A forward transformation is generated that modifies
the reference surface to align with the target surface. Using at
least a portion of the forward transformation, a backward
transformation is calculated that modifies the target surface of
the current frame to align with the reference surface. The
backward transformation is then applied to the DDF to gen-
erate a transformed DDF. The server updates the reference
model with the transformed DDF and transmits data for the
updated reference model to enable a representation of the
object to be produced at a remote location.
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1
SCANNING AND TRACKING DYNAMIC
OBJECTS WITH DEPTH CAMERAS

TECHNICAL FIELD

The present disclosure relates to three dimensional models
of real world environments.

BACKGROUND

Three dimensional (3D) models have many uses in modern
communication, such as novel view generation. “Novel view
generation” is using the video from several cameras to con-
struct a view from a point where there is no physical camera.
This is valuable to provide a fly-through view of a factory or
a sports game or a meeting, for example. Reconstruction
algorithms for 3D models suffer from problems, such as
incompletion due to occlusions and inaccuracy. Using tem-
poral information has proven useful for improving recon-
struction quality in some cases with rigid structures or
restricted motion.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a video conference system
capable of supporting an online conference session during
which content may be shared according to the techniques
presented herein.

FIG. 2 is a diagram of a room with an array of cameras for
supporting an online conference session according to the
techniques presented herein.

FIG. 3 is a block diagram of a server configured to support
the online conference session according to the techniques
presented herein.

FIG. 4 is a diagram that illustrates the flow of data in
creating, updating, and tracking a model of a person accord-
ing to the techniques presented herein.

FIG. 5 is a diagram that illustrates depth data of a person
captured at a single frame, and a model, deformed according
to the techniques presented herein, that matches the captured
frame.

FIG. 6 is a graph showing the stability of the error between
the model and captured frames of depth data accumulated
over a plurality of frames according to the techniques pre-
sented herein.

FIG. 7 is flowchart of an example process for building a
model from observed frames according to the techniques
presented herein.

FIG. 8 is a flowchart of an example process for tracking the
model to an observed frame according to the techniques pre-
sented herein.

FIG. 9A is a diagram of a model of a room captured
according to the techniques presented herein.

FIG. 9B is a diagram of the model segmented in static,
semi-static, and dynamic objects according to the techniques
presented herein.

FIGS.10A, 10B, and 10C illustrate an example of prevent-
ing the models of two close objects from intersecting accord-
ing to the techniques presented herein.

DESCRIPTION OF EXAMPLE EMBODIMENTS
Overview
In accordance with an embodiment, a video conference

server receives a plurality of video frames including a current
frame and at least one previous frame. Each of the video
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2

frames includes a corresponding image and a corresponding
depth map. The calibration parameters (camera intrinsic
matrix, lens distortion, and camera pose) of the camera for
each video streams may be pre-computed. The server also
stores a reference model including data representing a refer-
ence surface corresponding to typically one object captured
in the video frames. This reference model may be initialized
as data observed in the first frame and updated for the whole
system operation. The server produces a directional distance
function (DDF) field that represents an area surrounding a
target surface of the object captured in the current frame. A
forward transformation is generated that modifies the refer-
ence surface to align with the target surface. Using at least a
portion of the forward transformation, a backward transfor-
mation is calculated that modifies the target surface of the
current frame to align with the reference surface. The back-
ward transformation is then applied to the DDF to generate a
transformed DDF. The server updates the reference model
with the transformed DDF and transmits data for the updated
reference model and the forward transformation parameters
to enable a representation of the object to be produced at a
remote location.

EXAMPLE EMBODIMENTS

The following description is directed to techniques for
extending the use of temporal information in 3D reconstruc-
tion of dynamic objects. The 3D capture system first builds a
complete and accurate 3D model for dynamic objects (e.g.,
human bodies) by fusing a data sequence captured by com-
modity depth and color cameras, and then tracks the fused
model to align it with following captures. One component of
the system is the non-rigid alignment of the depth data at
different instants during both scanning and tracking stages.
The system integrates the measurement of both dense point
cloud alignment and color consistency into an energy mini-
mization problem, which is then solved efficiently by a gra-
dient descent method. The system also extends the volumetric
fusing algorithm to accommodate noisy 3D data during the
scanning stage. Specifically, a new representation of 3D data
is introduced, referred to herein as the Directional Distance
Function (DDF), which incorporates a direction field point-
ing to the nearest points on the surface along with a signed
distance field. The new data representation helps to solve the
non-rigid matching algorithm more efficiently.

Referring to FIG. 1, a video conference (e.g., telepresence)
system 100 is shown with two computing devices (endpoints)
110 and 112 communicating data representing rooms 120 and
122. Rooms 120 and 122 include users 130 and 132, respec-
tively, as well as display devices 140 and 142. Display 140
shows a representation 150 of user 132 to user 130. Similarly,
display 142 shows a representation 152 of user 130 to user
132. Only two rooms are shown in FIG. 1, but any number of
conference rooms and users may be included in system 100.
Computing devices 110 and 112 may be co-located with
rooms 120 and 122, and may take a variety of forms, includ-
ing a server, desktop computer, laptop computer, mobile/
cellular phone, tablet computer, etc. In another example,
devices 110 and 112 may be implemented in one or more
remote servers that are connected to rooms 120 and 122. The
network that connects devices 110 and 112 to each other and
to rooms 120 and 122 may be any type of network (e.g., any
combination of Internet, intranet, local area network (LAN),
wide area network (WAN), wired network, wireless network,
etc.) that connects computing devices.

Referring now to FIG. 2, an example of video conference
room 120 is shown. Video conference room 120 may include
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one or more cameras 210 throughout the room to capture the
objects in the room for display in a remote location. The
objects in the room may include static objects that do not
change, such as walls 220. The other objects 230 in the room
120 may be semi-static, i.e., they may change slightly. Some
objects 230 may be dynamic objects that can change in posi-
tion and/or configuration, such as chairs and people. In the
example shown in FIG. 2, display 140 shows a representation
150 of auser at aremote location, allowing a user in room 120
to interact with the remote user.

Referring now to FIG. 3, a simplified block diagram of
computing device 110 is shown. Device 110 includes a pro-
cessor 310 to process instructions relevant to a telepresence
session supported by the system 100, memory 320 to store a
variety of data and software instructions (e.g., captured data
frames, stored object models, instructions for creating and
tracking object models, etc.). The device also includes a net-
work interface unit (e.g., card) 330 to communicate with
other devices. The device may also include a user interface
unit(s) 340 in the form of a keyboard, mouse and/or a touch-
screen user interface to allow for a user to interface with the
device. Memory 320 may comprise read only memory
(ROM), random access memory (RAM), magnetic disk stor-
age media devices, optical storage media devices, flash
memory devices, electrical, optical, or other physical/tan-
gible (e.g., non-transitory) memory storage devices. The pro-
cessor 310 is, for example, a microprocessor or microcontrol-
ler that executes instructions for implementing the processes
described herein. Thus, in general, the memory 320 may
comprise one or more tangible (non-transitory) computer
readable storage media (e.g., a memory device) encoded with
software comprising computer executable instructions and
when the software is executed (by the processor 310) it is
operable to perform the operations described herein. While
computing devices 110 and 112 will be described as different
devices, they may include similar elements and may each
perform similar operations as described herein.

Non-Rigid Alignment for One Dynamic Object

When deforming a template surface to match with a target
surface, the corresponding points should be as close as pos-
sible. However, the point correspondence is unknown before
the alignment. In this example, the template surface is repre-
sented as a Directional Distance Function by adding a direc-
tion field pointing to the nearest points on the surface along
with the signed distance field. In this way, an analytic solution
for the derivatives of the measurement function can be
deduced and the gradient descent vector may be computed.
Additionally, a color consistency constraint may be inte-
grated into the framework such that its derivative also has an
analytical solution, which allows the problem to be solved
efficiently and robustly.

Deformation Graph Model

In one example of a deformation graph model, a deforma-
tion is represented by a collection of affine transformations. A
number of nodes (typically several hundred) are uniformly
sampled from the template surface. In addition to its location
g,,eachnoden, has a 3x3 matrix A, and a translation 3D vector
t; associated with it, representing the local affine transforma-
tion around the graph node. Neighboring nodes connect to
each other and collectively form a Deformation Graph
G={( A, t;, ;) },-,”, an example of which will be discussed
below referring to FIG. 4. Any given point v on the template
surface could be deformed by applying a linearly blended
affine transformation from its neighboring graph nodes N,
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\7:2 wilA;(v—g)+g;+1], M
JjeN

where w, is the blending weight and depends on v’s geodesic
distance to graph node n;. The surface normal is transformed
according to,

=y wiA . @

JEN

During non-rigid alignment, {{ A,

o 1) } is estimated for the
deformation graph by solving,

’ D, Wit Ep + Wreg Ereg + WeoEcon (©)
ol
where,
Eoi = ((@]a) + (@] as)’ + (@fas) + (1 - afan)’ + (&)

J

(1= dba)® + (1 —alas)’) + c(det(A ) - 12,

which constrains the column vectors a,, a,, a; of to being
orthogonal and unitary. The determinant of A; is also con-
strained to being 1, which prevents flipping the surface nor-
mal. The constant ¢ may be, for example, 100.

An additional regularization term E,,, ensures the smooth-
ness of the deformation:

Ereg = Z Z A (g —gp) +g;+1; — (& +fk)||§-

J ®
=1 keNG)

E,,, constrains that when deforming n, with its neighbor
n,’s affine transformation, it does not deviate dramatically

from the deformation with its own affine transformation. The

third term E_,,, comes from matched key points {{v,, q,} } of
two surfaces,

Eeon = ) 117 - gill3, ©)

where v is the deformed v, from Equation (1). In one example,
the key points are Lucas-Kanade corner points that are con-
verted to 3D points from 2D image locations using their
observed depth.

To better align noisy 3D data from commodity depth cam-
eras, additional terms B ;,,; ., and E_;, and respective blend-
ing weights w,,,; ,, and w_,, may be added for dense point
cloud alignment and color consistency, respectively, trans-
forming equation (3) to

o

{<min>} WrotEror + Wreg Ereg + WeonEocon + Wans_pisEdns_pts + WeirEctr
Ajt;
A
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Directional Distance Function and Measurement of Surface
Alignment

The matched key points from E_,, are sparse features on
the surface; their alignment does not represent the global
surface alignment. A dense point alignment across the entire
surface may represent the global surface alignment better
than the alignment of key features at sparse locations. In one
example, the target surface is represented as a distance field so
that the surface alignment can be efficiently measured. At
each voxel of the volume data, the distance D and direction P
to its closest point on the surface are measured. This repre-
sentation is an extension of a Signed Distance Function (SDF)
and is called the Directional Distance Function (DDF). In this
example, the energy function E for dense point cloud
alignment is defined by,

dns_pts

Edns s = | (D)) ®

where \71. is the deformed template surface point as defined in
Equation (1).

In one example, the DDF may be calculated by recording
the position of the nearest point on the surface, and subtract-
ing its position to get P. In this example, the voxel whose
closest surface point lies at the boundary of an open surface is
set to null, which prevents surface extension when recovering
a triangle mesh from a DDF. The surface boundary may be
identified either as pixels on a depth map that have depth
discontinuity with their neighbors or the vertices on a trian-
gular mesh that do not share an edge with other triangles.

P in the Directional Distance Function may be helpful
when minimizing Equation (7). Since the energy function is
in least squares form, it may be efficiently solved via a gra-
dient descent-like method (e.g., a Gauss-Newton algorithm)
as long as the Jacobian matrix J is provided. One method of
solving this nonlinear least squares problem is to use the
Levenburg-Marquardt algorithm. The Jacobians for E, ,,
B, and B, are straightforward and will not be explicitly
described herein. The Jacobian for E may be calculated
from,

dns_pts

g DE)=VD i ©
o5, W)= 5 5 Vi
dpi P dpi

where p;, is the k-th deformation parameter. In one example of
computing the DDF, P is aligned to the surface normal when
IDl<e, for € equal to, e.g., 1.5 cm.

In some examples, parts of the target surface where front
and back surfaces are close enough that the deformed surface
point v, are attracted to the wrong surface during iterations.
Fortunately, VDI, is the approximation of the normal of v,’s
closest point on the target surface. When the normal fi, on the
deformed reference surface does not agree with VDI, this
means is heading to the wrong side of the target surface. One
way to nullify this attraction to the wrong part of the target
surface is to let

¢}
—(D(7;)) « 0,if VD |, -7 < 0.
dpi i
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Color Consistency

To maintain color consistency, when deforming the tem-
plate surface to the target, the matched points may have
similar color and/or texture. The E_,, term helps resolve align-
ment ambiguities when a near-symmetric part on the surface
rotates or moves, such as head turns and arm rotations. In one
example, the template surface is the currently accumulated
3D model from the depth and color of previous frames, and it
is represented by a triangle mesh with a 3D color vector c,
attached at each vertex. The target surface is the current
observation of the dynamic object, and its raw representation
is a set of depth maps {Z,} and color images {I,}.

With the depth and color cameras calibrated under the
same world coordinate system, P, projects a 3D point to the
k-th image coordinate. Thus, the color consistency term in
Equation (7) is

Far= Y, 31600+ [P0 - i, o
k i

where 8,(v,) is the visibility term. In other words, 8,(v,)=1
when is visible to the k-th color camera, and 0 when not
visible. Visibility checking may be performed with a z-buffer
algorithm. Additionally, 8, may be set to zero for vertices
whose outward normal point away from the camera, to pre-
vent holes in the incomplete front surface from erroneously
letting parts of back-facing surfaces pass the z-buffer test.
The Jacobians for E_,, have an analytic solution:

9 (P A aP 9
mk( (V:) = T 'a—pivt,

where VI, © is the image gradient for the c-th channel of the
k-th color image. The visibility check may be performed at
each iteration of the gradient descent method, since each
iteration produces a differently deformed template surface.

Referring now to FIG. 4, an example of deforming a ref-
erence model to track the latest observed frame will be
described. Camera 210, comprising color camera 410 and
depth sensor 412, provides a frame with image 420 and a
depth map 422. In this description, only a single camera 210
will be described, but typically multiple cameras will provide
image and depth data that is combined into a single frame.
The depth map 422 is converted into a Directional Distance
Function 430 for the object (e.g., a person) detected in the
frame. A deformation graph triangle mesh 440 is sampled
from the reference surface of reference model 450 and param-
eters are calculated for a forward deformation to align the
reference model 450 with the DDF 430 of the current frame.
The reference model 450 is further aligned with the color
and/or texture from the image 420 as well as from previous
color images that have been accumulated in the reference
model.

Still referring to FIG. 4, an example of building the refer-
ence model by accumulating frames will be described. A
backward deformation from the DDF 430 to the reference
model 450 is computed according to the forward deforma-
tion. Details of the backward deformation are described later.
Once the DDF 430 of the current frame is deformed back to
the reference state, it is fused into a Multi-Mode Distance
Function (MDDF) at the reference. The MDDF is similarto a
DDF, except that is comprises multiple distance values and
direction vectors at each voxel. A more detailed description of
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the MDDF will be presented below. To update the reference
model with data from the latest captured frame, a new refer-
ence surface is generated from the MDDF and the new refer-
ence surface is textured with color data from all of the cap-
tured frames to form the updated, colored reference model
460.

Backward Deformation from Target to Reference

Given the forward deformation parameters {<A, t>}, one
example may be to set the backward deformation parameters
as {<A; !, -t >}, and the graph node position as g+, How-
ever, this simple inversion of the forward deformation does
not guarantee a close backward alignment, since the inverse
of'the linear interpolation of affine matrices does not equal the
linear interpolation of the inverse of affine matrices. In
another example, the point correspondence of the references
and target are found according to the forward deformation,
and the backward deformation parameters are estimated by
formulating the point correspondence into E__,,.

In this example, a backward transformation that is esti-
mated for transforming the target surface to the reference
surface is applied directly on the DDF of the current frame.
Although the non-rigid transformation is only defined on the
surface, each voxel of the DDF may be transformed according
to the deformation parameters of its closest point on the
surface. The following algorithm shows one example of a
solution to deforming the target DDF 430 to a reference
model 450:

for each i-th voxel of F,,,, at location p, with direction to the
nearest surface point denoted as P, and distance value denoted
as D,, do

1. deform its location according to Equation (1): p,—p;;

2. deform its direction P, according to Equation (2): P,—P;;

3. record the deformed voxel as a 4-tuple: { p,, P, P, D,};
for each voxel of F,at location g, do
1. find the set of its neighboring deformed I, voxel:

5 ={{pes Bs Pes Dihlipy -at<els

2. Divide S into subgroup {G,} by clustering on p;
3. Find the subgroup G, with the smallest averaged D;
4. set the direction and distance value of F,at q:

Preg = Z wi P
keGs

Dy = Z wy Dy
keGy

where wy = exp(—(g — p,)")

One situation that may be handled separately is when the
transformed voxels collide with each other. At each voxel
positiononF,_, the nearby transformed I, , voxels are found
and grouped according to their original grid positions. The
group with the smaller absolute value distance is found, and
the direction vector and signed distance value for the F,, -are
interpolated from this group.

Fusion of Multiple DDFs for One Dynamic Object

In an example when the noise level of the DDF is low,
summing over multiple aligned DDFs cancels out the noise,
and the surface can be recovered by finding the zero-crossing
of'the fused distance field, e.g., with a Marching Cubes algo-
rithm. However, in an example with the noise level compa-
rable to the object dimension, summing over the distance field
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would expand the surface artificially and provide zero-cross-
ing that do not accurately find the reference surface. This is
because the distance field needs to be truncated so that the
distance field of a front surface does not interfere with the
surface behind. The distance p behind the surface where
truncation begins in this example should be positive relevant
to the noise level. In an example where a large 1 is chosen to
suppress the noise, the zero-crossing of the fused distance
field may not align with the surface due to the interference
between the distance functions of the front and back surface.

In another example, VD may be used to differentiate which
surface a distance value corresponds to, and VD may be
obtained using Equation (9) above. In this example, multiple
DDFs are fused by, at each voxel, summing only over the
distance value D with similar VD, preventing the interference
between the distance fields corresponding to different surface
parts. This results in a new data structure: the Multi-Mode
Directional Distance Function (MDDF). Each voxel of a
MDDF records a set of averaged D’s, VD’s, and the weights
on all modes. In this way, a new DDF can be fused to the
reference MDDF by finding the mode with the most similar
VD at each voxel, then the distance value and VD of the new
DDF is incorporated into that mode and the weights are
updated. To recover the reference surface from a MDDF, a
single mode may be selected to downgrade it to a DDF. In one
example, the mode selected is the one with the smallest abso-
lute distance value.

After fusing a number of DDFs (e.g., a few hundred) of the
same object, the improvement on a scanned model tends to
converge. Thus, in one example, a complete model is consid-
ered to be achieved, and the backward deformation steps may
be omitted. In this example, only the forward deformation
steps of tracking a scanned object to a reference model is
used, and the reference model is not updated with further
scanned frames of the object.

To track a fast moving surface, a Kalman filter may be used
to predict the translation vector t; for each deformation node
of the next frame. This prediction may be used as the initial
parameter of the non-rigid alignment problem. In this
example, the matrices {A } are initialized using the values of
the last frame.

In another example, the surface being tracked may be con-
strained to roughly isometric deformation, i.e., the geodesic
distance of any pair of surface points is preserved during
deformation. For example, the deformation of a 3D human
body model may be nearly isometric. In this example, a new
term E, , is added to the energy minimization problem of
Equation (7), as follows,

an

J
Efen = Z

=1

2
Z llgs +12; — g — tel—lg; — gell5-
N

where g and t, are the node location and translation vector of
the deformation graph, respectively, and N(j) are neighbors of
the j-th node. E,_, penalizes the changes of the length of the
edge connecting the neighboring nodes during deformation.
Although E,_, does not guarantee an exact isometric defor-
mation, it may be effective to minimize stretching and shrink-
ing of the surface. In one example, E, , may allow for length
changes for some parts, e.g., outliers.

Referring now to FIG. 5, several examples of reference
models deformed to match captured frames are shown. Single
captured frames are shown as triangle meshes 440 along the
bottom row of FIG. 5. Deformed reference models 540 are
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shown along the top row with the respective reference models
being deformed to match the corresponding single captured
frame below it.

Referring now to FIG. 6, a graph 600 is shown of a plurality
of' examples of the convergence in error as additional frames
are fused to the reference model. In graph 600, the mean 610
and standard deviation 620 of the difference between the
scanned model and the observed surfaces at each frame. To
measure the difference, the observed surfaces are deformed to
the reference surface as described above. The averaged dis-
tance between matched points is used as the measurement of
the surface difference shown in lines 610. As shown by the
mean difference 610 in graph 600, the difference between the
model accumulated from multiple frames and each individual
frame stays relatively constant as the number of frames
included in the model increases. This indicates that the non-
rigid alignment algorithm functions well, and the scanning
system handles any issues in error accumulation of the model.

Referring now to FIG. 7, an example process 700 for updat-
ing a reference model with captured frame is described. Ini-
tially, in step 710, a server or other computing device receives
a reference model of at least one dynamic object in a room. In
one example, the reference model is based on the initial frame
that is captured at the beginning of a telepresence session. In
another example, the reference model has been pre-scanned
by either the same computing device or a separate computing
device. The reference model may comprise a reference sur-
face that represents the surface of the dynamic object.

In step 720, the server receives a frame that contains color
and depth information. One example of color information
comprises red, green, and blue (RGB) data for pixels, and
depth information may comprise a distance from the camera
to the object that is captured in a pixel of the image. While
forms of color information other than RGB may be used,
hereinafter the data in the frame will be called RGB-D data.
The RGB-D frame may comprise information from multiple
cameras that has been combined into a single frame. In one
example, a plurality of cameras may have views of different
portions of the dynamic object in the room, and each camera
provides RGB-D data. Alternatively, some cameras may pro-
vide color data, while separate cameras provide depth infor-
mation.

In step 730, the server processes the depth information
(e.g., depth map) from the received RGB-D frame and creates
a directional distance function (DDF) field. The DDF field is
used to determine a target surface that represents the surface
of the dynamic object captured in the frame. The target sur-
face may be an incomplete representation of the dynamic
object, e.g., due to occlusion of the camera’s field of view.

In step 740, the server generates a forward transformation
to align the reference surface from the reference model to the
target surface of the current frame. One example of an algo-
rithm described above accounts for various factors (e.g.,
matching key points on the depth map, matching color infor-
mation, isometric deformation, etc.) in determining the for-
ward transformation.

In step 750, the server calculates a backward transforma-
tion to align the target surface of the current frame to the
reference surface of the reference model. Some of the factors
determined from the forward transformation may be used to
assist in calculating the backward transformation. In one
example, the matched points found for the forward transfor-
mation may be used in calculating the backward transforma-
tion. Once a suitable backward transformation is calculated
that aligns the target surface back to the reference surface, the
transformation is applied to the voxels of the DDF field of the
current frame, at step 760.
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In step 770, the backward transformed DDF is used to
update the reference model with information from the current
frame. After the reference model is updated, it may be trans-
mitted for use in another computing device. In one example,
the reference model is transmitted to a remote server enabling
the remote server to produce a representation of the dynamic
object at the remote location.

Referring now to FIG. 8, an example process 800 for track-
ing a dynamic object to a reference model is described. In step
810, a server or other computing device receives an RGB-D
video frame with color and depth information about the
dynamic object captured in the frame. As described with
respect to process 800, the video frame may comprise infor-
mation from multiple cameras. For each RGB-D frame that is
received, at step 820, the server processes the depth map from
the current frame into a DDF field with a target surface. In
step 830, the server generates a forward transformation to
align a reference surface from a reference model to the target
surface of the DDF of the current frame. The server may then
transmit the forward transformation at step 840.

Tracking Both Dynamic Objects and Static Objects

In some examples, a room may include static objects, semi-
static objects and dynamic objects. Static objects include
objects and surfaces that will not move throughout the length
of'a conference session, e.g., walls, pictures hung on a wall,
floor, etc. Static objects may be pre-scanned and reproduced
in the reference model using only the pre-scan, i.e., static
objects do not need to be tracked throughout the conference
session. Semi-static objects include objects that may move,
but will move rigidly, e.g., chairs, tables, etc. Semi-static
objects may change by translation or rotation throughout the
room, but will not change configuration. Once a model of a
semi-static object is generated (e.g., in a pre-scan), then track-
ing the object in a conference session only requires detecting
rigid changes in translation and rotation. Dynamic object
include objects, e.g., human bodies, which may move non-
rigidly. Dynamic objects will be tracked both for location and
surface deformation. Additionally, an object may break and
segment into multiple objects, e.g., when a box is picked up
from a table. An object may also change from one type to
another, e.g., when a static object is moved or a semi-static
object changes shape. While only three examples of types of
objects have been described herein, more or fewer types of
objects may be used to characterize a scene. The dynamic
objects may be pre-scanned using the accumulation system
introduced earlier.

In one example, a unified tracking algorithm deforms or
transforms pre-scanned semi-static object models along with
dynamics models accumulated throughout the conference
session. Semi-static objects move rigidly, and their move-
ments may be represented by rotation matrices and transla-
tion vectors. A vertex v on a semi-static model may be trans-
formed as

v=RN+T}, (12)

where v is the transformed vertex, R, is the rotation matrix,
and T, is the translation vector. The nonrigid movements of
dynamic objects are transformed as described above. Com-
bining the rigid transformations of the semi-static objects and
the nonrigid transformations of the dynamic objects allows
for a unified tracking algorithm for some or all of the objects
in a video conference session.

Referring now to FIGS. 9A and 9B, a pre-scan of room 900
is shown with various object models of static and semi-static
objects, before and after object segmentation. FIG. 9A shows
the entire room with objects in place, and FIG. 9B shows each
segmented object individually. The ceiling, floor, and walls
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910 are detected and categorized as static objects that will not
change in a video conference session. End tables 920 and 930,
sofa 940, table 950, and chair 960 are also detected each as
individual objects and categorized as semi-static objects. The
rigid movements of semi-static objects may be tracked
throughout a video conference session, and the position of the
models is updated accordingly. In contrast, both the rigid and
non-rigid movements of dynamic objects, such as people
interacting in the session, may be tracked and updated
throughout the video conference session. In one example, the
static objects and semi-static objects may be pre-scanned
separately from any video conference session. The pre-scan
may be captured by a single, moving camera that captures
color and depth data. Alternatively, multiple cameras may be
used, and some or all of the cameras may be stationary or
moving. In another example, object models may be improved
by fit to apparent characteristics (e.g., symmetries of round
table 950) and/or by fit to previously known models (e.g.,
provided by the manufacturer of the object or a third party).

In one example of a pre-scanned room, the dominant
planes in the room are extracted to form the room frames. In
other words, six planes that comprise a relatively large num-
ber of data points (corresponding to the floor, walls, and
ceiling) are detected. Additionally, surface points within a
certain distance from one of the planes may also be denoted as
part of the room frame to accommodate noise in the camera(s)
and/or minor irregularities in the wall surfaces (e.g., paintings
hung on the wall, area rugs, etc.). The remaining surface mesh
after eliminating the room frame represents everything inside
the room. Connected component labeling is run on this
remaining surface mesh to segment it into isolated triangle
meshes. In one example, each isolated triangle mesh may be
further identified as a semi-static object or a static object.

Introducing dynamic objects to a pre-scanned room of
static and semi-static objects may lead to the dynamic objects
closely interacting with other objects. In some examples, the
models of the dynamic objects may appear to penetrate the
other object, rendering an unphysical result in which solid
objects appear to pass through each other. This may be caused
by severe occlusions during the interaction and/or by the high
degree of freedom on the non-rigid movements of the
dynamic object. Additionally, self-intersection may occur
when different parts of the same dynamic object are in close
proximity, e.g., a person crossing their arms. In one example,
an additional term E,,,.., may be added to the energy minimi-
zation problem to force intersecting surfaces to move apart.
One example of the additional term E,,_, is given by

Eipse = 8" (7= ) > 0 &AL = Fp) < 0711 (7 = T)), 13

velS;)

where 8 is a function that evaluates its Boolean argument and
returns 1 if the argument is true and returns 0 otherwise.

To detect whether a vertex v intersects others, the nearest
neighbor point v,,,. on other surfaces or parts is determined. If
the outward normal fi points in the direction of the nearest
neighbor point v,,,, and the outward normal fi,, points in the
direction of the point v, then the surfaces do not intersect and
E,.sc; 18 zero. If the outward normals point away from the
nearest neighbor point, then E,, ., pushes v toward the posi-
tion where v-v, , is perpendicular to fi ,, which is the direc-
tion departing the other surface. In other words, if the outward
normal of the point on the dynamic object is pointing to the
nearest point on the static object AND the outward normal of
the point on the static object is pointing to the point on the
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dynamic object, then the two objects are not intersecting. The
outward normals are pointing at each other.

After adding the new term E,,,,, the final energy minimi-
zation problem for tracking both dynamic and rigid objects
may be formulated as

min (14)

WrotEror + Wreg Ereg + WeonEcon +
G R Tj

Wans_ptsEdns_pts + Weir + Ectr + Winset Einsce»

where G, represents the parameters {<A,, t,>} of the defor-
mation graph for a dynamic object, and <R, T> are the
transformation parameters for a rigid object. B, . andE_;,
have the same form as those in equation (8) and (10) except v
in the equations can be a vertex either from a dynamic object
or arigid object. E,,,, and B, , are constraints on the deforma-
tion graphs for dynamic objects and have the same definition
asthose in equation (7). E_,,, contains the constraints from the
matched sparse feature points between reference surfaces and
target surfaces and has the same definition as the one in
equation (7).

Referring now to FIGS. 10A, 10B, and 10C, an example of
intersection conditions applied to dynamic objects is shown.
Depth map 1010, shown in FIG. 10A, shows a captured frame
of'a person sitting in a chair. FIG. 10B shows the depth map
segmented into a model 1020 of a person and model 1030 of
the chair. The example shown in FIG. 10B does not have an
intersection detection energy term, and portion 1022 of model
1020 passes through model 1030. This gives the appearance
that the person’s back has passed through the solid backrest
on the chair. FIG. 10C shows the model 1040 of the person
and model 1050 of the chair, including a energy term that
detects and inhibits intersecting surfaces. In the example of
FIG. 10C, the models 1040 and 1050 are prevented from
intersecting, maintaining a consistent appearance.

In summary, the telepresence system described herein
comprises a unified system that scans and tracks dynamic
objects with dramatic movements using potentially noisy
depth and color cameras. The system includes a non-rigid
algorithm that integrates the measurement of both dense point
cloud alignment and color consistency into an energy mini-
mization problem. The energy minimization problem is then
solved efficiently by the gradient descent method. The system
also includes a 3D data fusion algorithm that handles noisy
depth cameras and fuses depth information into a clean and
accurate model.

The above system could be extended to track both dynamic
and rigid objects by adding a new constraint to prevent the
surface intersection. The extended system first pre-scans the
static part of the room and segment the room into static
background and semi-static objects. The dynamic objects
(e.g., human beings) in the room may be pre-scanned with the
earlier system by non-rigidly aligning data and accumulating
data overtime. The extended system then tracks both dynamic
and semi-static objects together.

In one particular example, a method for updating a refer-
ence model includes receiving a plurality of video frames
comprising a current frame and at least one previous frame.
Each of the plurality of video frames includes data for a
corresponding image and data for a corresponding depth map.
The method further comprises receiving a reference model
that includes data from the at least one previous frame. The
reference model includes data representing a reference sur-
face corresponding to at least one dynamic object captured in
the plurality of video frames. The method processes the data
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representing the depth map of the current frame to produce
data for a directional distance function (DDF) field that rep-
resents an area surrounding a target surface of the at least one
dynamic object captured in the current frame. A forward
transformation is generated that modifies the data represent-
ing the reference surface to align with data representing the
target surface. Using at least a portion of the forward trans-
formation, a backward transformation is calculated that
modifies data representing the target surface of the current
frame to align with the reference surface. The backward trans-
formation is then applied to the DDF to generate a trans-
formed DDF. The method updates the reference model with
the transformed DDF to produce data for an updated refer-
ence model. Data for the updated reference model may then
be transmitted to one or more remote locations to enable a
representation of the dynamic object to be produced at a
remote location.

In another example, an apparatus comprises a network
interface configured to communicate data across a computer
network, a user interface unit configured to communicate
with at least one video camera, and a processor configured to
process the video data. The processor receives, from the user
interface unit, a plurality of video frames comprising a cur-
rent frame and at least one previous frame. Each of the plu-
rality of video frames includes data for a corresponding
image and data for a corresponding depth map. The processor
receives a reference model that includes data from the at least
one previous frame. The reference model includes data rep-
resenting a reference surface corresponding to at least one
dynamic object captured in the plurality of video frames. The
processor processes the data representing the depth map of
the current frame to produce data for a directional distance
function (DDF) field that represents an area surrounding a
target surface of the at least one dynamic object captured in
the current frame. A forward transformation is generated that
modifies the data representing the reference surface to align
with data representing the target surface. Using at least a
portion of the forward transformation, a backward transfor-
mation is calculated that modifies data representing the target
surface of the current frame to align with the reference sur-
face. The backward transformation is then applied to the DDF
to generate a transformed DDF. The processor updates the
reference model with the transformed DDF to produce data
for an updated reference model.

In yet another example, a system comprises a plurality of
video cameras and a computing device. The plurality of video
cameras are configured to capture a plurality of video frames.
The plurality of video frames comprises a current frame and
at least one previous frame, and each of the plurality of video
frames includes data for a corresponding image and data for
a corresponding depth map. The computer receives the plu-
rality of video frames and a reference model that includes data
from the at least one previous frame. The reference model
includes data representing a reference surface corresponding
to at least one dynamic object captured in the plurality of
video frames. The computing device processes the data rep-
resenting the depth map of the current frame to produce data
for a directional distance function (DDF) field that represents
an area surrounding a target surface of the at least one
dynamic object captured in the current frame. A forward
transformation is generated that modifies the data represent-
ing the reference surface to align with data representing the
target surface. Using at least a portion of the forward trans-
formation, a backward transformation is calculated that
modifies data representing the target surface of the current
frame to align with the reference surface. The backward trans-
formation is then applied to the DDF to generate a trans-
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formed DDF. The computing device updates the reference
model with the transformed DDF to produce data for an
updated reference model.

In yet another example, a system comprises a plurality of
video cameras mounted on the walls of a room and a com-
puting device. The plurality of video cameras are configured
to capture a plurality of video frames. Each of the plurality of
video frames includes data for a corresponding image and
data for a corresponding depth map. In addition, the system
has offline procedures. During these offline procedures, the
system pre-scans the static part of the room. The pre-scanned
room is segmented into a static background and semi-static
objects. The static background comprises the part that does
not move significantly, such as the walls and floors, while the
semi-static objects moves only rigidly, such as chairs and
tables. The dynamic objects in the room are also required to
be scanned, which may be done by the system introduced in
the above first example. As described herein, scanning com-
prises acquiring the 3D representation of an object, which
may be represented by triangle meshes (or surfaces). After the
offline processing described above, the system may track both
the dynamic objects and semi-static objects and may deform
or transform the scanned dynamic and semi-static surface to
the target surface captured by the plurality of video cameras.
The deformed surfaces have the same quality as the pre-
scanned surface.

The above description is intended by way of example only.
Various modifications and structural changes may be made
therein without departing from the scope of the concepts
described herein and within the scope and range of equiva-
lents of the claims.

What is claimed is:

1. A method comprising:

receiving a plurality of video frames comprising a current
frame and at least one previous frame, wherein each of
the plurality of video frames includes data for a corre-
sponding image and data for a corresponding depth map;

receiving a reference model comprising data from the at
least one previous frame, the reference model including
datarepresenting a reference surface corresponding to at
least one dynamic object captured in the plurality of
video frames;

processing the data representing the depth map of the cur-
rent frame to produce data for a directional distance
function (DDF) field that represents an area surrounding
a target surface of the at least one dynamic object cap-
tured in the current frame;

generating a forward transformation that modifies the data
representing the reference surface to align with data
representing the target surface and generate data for a
modified reference surface;

calculating a backward transformation that modifies data
representing the target surface of the current frame to
align with the reference surface, wherein the backward
transformation uses at least a portion of the forward
transformation;

generating a transformed DDF by applying the backward
transformation to the DDF;

fusing the transformed DDF into a multi-mode distance
function (MDDF) comprising multiple distance values
and direction vectors at each of a plurality of voxels; and

updating the reference model based on the MDDF to pro-
duce data for an updated reference model.

2. The method of claim 1, further comprising transmitting

data for the updated reference model to enable a representa-
tion of the dynamic object to be produced at a remote location.
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3. The method of claim 1, further comprising:

updating the data for the reference surface using the
updated reference model to produce an updated refer-
ence surface; and

applying a texture to the data for the updated reference
surface based on at least one image from the plurality of
video frames.

4. The method of claim 1, further comprising receiving the
plurality of video frames from a plurality of video cameras,
each of the plurality of video cameras configured to measure
a distance to one or more objects in a physical scene.

5. The method of claim 4, wherein each of the plurality of
video frames comprises a composite of video frames from the
plurality of video cameras.

6. The method of claim 1, wherein the portion of the for-
ward transformation used in calculating the backward trans-
formation comprises a set of matched key points.

7. The method of claim 1, wherein generating data for the
modified reference surface comprises deforming each par-
ticular point with a three dimensional position vector v from
a plurality of points on the reference surface to align with the
target surface by applying a linearly blended affine transfor-
mation from a set of points neighboring the particular point
according to

V=) wilAjv-g)+g;+1]

JjeN

where v is a position vector of the particular point after the

deformation, N is the set of neighboring nodes of v on

the deformation graph, w; is a blending weight for a i

node in the set N, g, is a position vector of the i node, Aﬂ
is a 3x3 matrix, and t, is a translation vector of the j
node, wherein A; and t, represent the affine transforma-
tion associated with the i node on the deformation
graph, and wherein collectively {<A,t>} , rep-
resent the deformation parameters of the deformation
graph, where J is the number of the graph nodes in the
deformation graph.

8. The method of claim 7, wherein the deformation param-
eters {<A,t>} ,  inthedeformation graph areestimated
by solving

{<m1n WrortEvor + WregEreg + WeonEcon + deJ;erdnxJnx + Weir Bty
At
Faa)

where W, . W00 Wi W o @and W, , are weighting

coefficients, E, , is an energy term that constrains col-

umn vectors of A to be orthogonal and unitary, E, _ is an
energy term that ensures smoothness of the deformed
reference surface, E_,, is an energy term that matches at
least one key point between the deformed reference
surface and the target surface, B, . is an energy term
that aligns a dense point cloud according to the DDF, and
E_; 1s an energy term that aligns a color vector derived
from the image of the current frame with a color vector
derived from the image of the at least one previous
frame.

9. The method of claim 7, wherein the affine transforma-
tion A; and the translation vector t; for the i neighboring
point are estimated by solving
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weighting coefficients, E, , is an energy term that con-
strains column vectors of A; to be orthogonal and uni-
tary, B, is an energy term that ensures smoothness of
the deformed reference surface, E_, is an energy term
that matches at least one key point between the reference
surface and the deformed reference surface, B, , . isan
energy term that aligns a dense point cloud according to
the DDF, E_,. is an energy term that aligns a color vector
derived from the image of the current frame with a color
vector derived from the image of the at least one previ-
ous frame, E,, _, is an energy term that ensures the ref-
erence model does not intersect with a second object, R,
is a rotation parameter for the second object, and T, is a
translation parameter for the second object.

10. An apparatus comprising:

anetwork interface configured to communicate data across

a computer network;

a user interface unit configured to communicate with at

least one video camera;

a processor configured to:

receive a plurality of video frames through the user
interface unit, wherein the plurality of video frames
comprises a current frame and at least one previous
frame, and wherein each of the plurality of video
frames includes data for a corresponding image and
data for a corresponding depth map;

receive a reference model comprising data from the at
least one previous frame, the reference model includ-
ing data representing a reference surface correspond-
ing to at least one dynamic object captured in the
plurality of video frames;

process the data representing the depth map of the cur-
rent frame to produce data for a directional distance
function (DDF) field that represents an area surround-
ing a target surface of the at least one dynamic object
captured in the current frame;

generate a forward transformation that modifies the data
representing the reference surface to align with data
representing the target surface;

calculate a backward transformation that modifies data
representing the target surface of the current frame to
align with the reference surface, wherein the back-
ward transformation uses at least a portion of the
forward transformation;

generate a transformed DDF by applying the backward
transformation to the DDF;

fuse the transformed DDF into a multi-mode distance
function (MDDF) comprising multiple distance val-
ues and direction vectors at each of a plurality of
voxels; and

update the reference model based on the MDDF to pro-
duce data for an updated reference model.

11. The apparatus of claim 10, wherein the processor is
further configured to transmit data for the updated reference
model via the network interface unit to enable a representa-
tion of the dynamic object to be produced at a remote location.

12. The apparatus of claim 10, wherein the processor is
further configured to update the data for the reference surface
using the updated reference model to produce an updated

ror’
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reference surface, and apply a texture to the data for the
updated reference surface based on at least one image from
the plurality of video frames.

13. The apparatus of claim 10, wherein the user interface
unit is further configured to receive the plurality of video
frames from a plurality of video cameras, each of the plurality
of video cameras configured to measure a distance to one or
more objects in a physical scene.

14. The apparatus of claim 13, wherein each of the plurality
of'video frames comprises a composite of video frames from
the plurality of video cameras.

15. The apparatus of claim 10, wherein the processor is
further configured to use a set of matched key points from the
forward transformation to calculate the backward transfor-
mation.

16. A system comprising:

aplurality of video cameras configured to capture a plural-

ity of video frames comprising a current frame and at
least one previous frame, and wherein each of the plu-
rality of video frames includes data for a corresponding
image and data for a corresponding depth map;

a computing device configured to:

receive the plurality of video frames;

receive a reference model comprising data from the at
least one previous frame, the reference model includ-
ing data representing a reference surface correspond-
ing to at least one dynamic object captured in the
plurality of video frames;

process the data representing the depth map of the cur-
rent frame to produce data for a directional distance
function (DDF) field that represents an area surround-
ing a target surface of the at least one dynamic object
captured in the current frame;

generate a forward transformation that modifies the data
representing the reference surface to align with data
representing the target surface;
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calculate a backward transformation that modifies data
representing the target surface of the current frame to
align with the reference surface, wherein the back-
ward transformation uses at least a portion of the
forward transformation;

generate a transformed DDF by applying the backward
transformation to the DDF;

fuse the transformed DDF into a multi-mode distance
function (MDDF) comprising multiple distance val-
ues and direction vectors at each of a plurality of
voxels; and

update the reference model based on the MDDF to pro-
duce data for an updated reference model.

17. The system of claim 16, wherein the computing device
is further configured to transmit data for the updated refer-
ence model to enable a representation of the dynamic object
to be produced at a remote location.

18. The system of claim 16, wherein the computing device
is further configured to update the data for the reference
surface using the updated reference model to generate an
updated reference surface, and apply a texture to the data for
the updated reference surface based on at least one image
from the plurality of video frames.

19. The system of claim 16, wherein at least one of the
plurality of video cameras is configured to measure a distance
to one or more objects in a physical scene.

20. The system of claim 16, wherein each of the plurality of
video frames comprises a composite of video frames from the
plurality of video cameras.

21. The system of claim 16, wherein the computing device
is further configured to use a set of matched key points from
the forward transformation to calculate the backward trans-
formation.



